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138 W. BARRETT

The methods of part III are further applied to the construction of approximations
for the fundamental solution and base functions of part II in terms of higher
transcendental functions. The domain of validity is now the complete half-strip
{z;0 < Re z < 4n, Im z > 0} without exceptional point. Relative remainder esti-
mates are again uniformly valid provided they are bounded.

Specifically, approximations are obtained in terms of:

(a) Airy functions, applicable if A # + 2A2;

(b) parabolic cylinder functions, applicable if |A] < 442, including A = + 2A?;

(¢) Bessel functions, applicable if [A| > 4A%; these formulae have maximum rela-
tive error A-$420(1) on the half-strip, even if 4 is arbitrarily small, provided only that
A~tis bounded. This is significantly better when A/A2 is large than the corresponding
estimate, A=¥0(1), for the Airy function approximations.

Certain more refined estimates for the auxiliary parameters introduced in part II
are also obtained.

1. GENERAL

Three types of approximation are considered.

(a) In terms of Airy functions

These comprise approximations which remain valid in the neighbourhood of the single
transition point on the frontier of the fundamental region £ (part IV, §1). They do not,
however, remain satisfactory when this point is near z = 0 or z = =, thatis, when |A" /42| ~ 2.

(b) In terms of parabolic cylinder functions

These are valid for a range of parameters in which a pair of transition points can coalesce,
covering the case in which the first type is not applicable. There are two subtypes; the first in
terms of ordinary functions, for a range of values of A’/A? including the value — 2, for which
two transition points coalesce at z = 0, and the second, in terms of modified functions, for a
range including the value A’/A%2 = 2 for which two transition points coalesce at z = }n. The
relative order of magnitude of the remainder is O(A~') or smaller, uniformly on the specified
domain of variable and parameters. The notation of Miller (1952) is used for the parabolic
cylinder functions.

(¢) In terms of Bessel functions

These take account similarly of a pair of transition points in the upper half-plane. Again
there are two subtypes; one in terms of Bessel functions of real order, applicable when
A/h* > ¢ > 2, and the other in terms of functions of imaginary order, applicable when
AJR% <

again uniformly; thus the remainder may be small even if neither parameter is large, in

¢ < —2. The relative order of magnitude of the remainder is A-#420(1) or smaller,

particular if % is small and the order, which is then approximately equal to A%, is bounded
and bounded away from zero. Under these conditions neither elementary function nor Airy
function approximations are useful.

The second and third types encompass between them the full range of values of A’/A2; it
was found convenient to choose specific values of this quotient to delimit the ranges of applica-
bility of the four subtypes, but there is no particular significance in the precise choice made.
The methods used in constructing the formulae of these same two types also lead to certain
refinements of the estimates for the auxiliary parameters (mu, @) or (f, @) introduced in
part II.
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MATHIEU FUNCTIONS OF GENERAL ORDER. V 139

The calculations required are naturally quite different for the three types of approximation;
however, just as in part IV, for any one type they have many common features for different
parameter ranges, so that they are only given in detail for one range. However there is one
technique used in connection with all three types, based on the use of the maximum modulus
principle, to obtain estimates for the error control function in a region containing the relevant
transition points.

Expressions for majorant functions for the different basic functions have been determined.
They are not included except in the case of Airy functions, since their description is complicated
by the fact that they take different forms in different subdomains. Instead, remainder estimates
of the form III, (1.54) have been converted into the form described in part III, §6. As indi-
cated there, the quantity  appearing in each formula may be interpreted as an error relative
to the principal term of the formula, except near zeros of the latter where the error is given
relative to the amplitude of oscillation of the principal term. In the text, however, as distinct
from the tables of formulae, remainder terms have been left in the form II, (1.54) for compact-
ness; majorant functions are represented by bold-face versions of the symbol for the basic
functions, the argument being omitted. Further remarks on the interpretation of remainder
terms appear in part I, §2 ().

2. APPROXIMATIONS IN TERMS OF AIRY FUNCTIONS
With &, £,, F(z) defined as in part IV and with

£ =[3(E- &)}

as independent variable, the Mathieu equation reduces in accordance with III, (3.3) to

d/dg? = {2+ y(2)) (2.1)
where y=8F2z)w
and ¥a(2) = ¥(2) +5%6(E— &) 7% (2.14)

¥ (z) being given by IV, (1.7). The factor {4F(z) is analytic and the map z — { is regular,
on the union of the fundamental region £ and that contiguous fundamental region, depending
on the value of A’/h%, which shares the transition point z, at which £ = £,; (§—&,)? is also
analytic on this extended region, although £ itself is not single valued. The choice of branch
for ¢ differs in the three cases which arise.

2.1. The case ' < —2h?
(@) The variation of the e.c.f.

By IV, §2.3(c), and (2.1a) above,
¥a(2z) = [£-&]?0(1) on R, (2.2)
so that the estimate IV (2.134) applies also to var f ¥y(z) df onany path yin R,. If A’ > — 442,
¥

R, = ©Q; otherwise, 2 = R, U R, and account must be taken of R,. In the latter case,
[4(2)]7* = O(1) uniformly on R,, whence by lemma 2 (IV, §2(c))

| C V(2) = [4(2)]H o)
and (E—£&) = (E*—£)"1 0(1) = [4(2)] O(1).

14 Vol. gor. A
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140 W. BARRETT

Hence for any family of paths y in R,, satisfying the conditions of lemma 1 of part III, §5 for
both the functions ¥,(z), ¥,(z) of IV, §2(¢),

var f Vi(2) dE < var f Y(2) dE +5 var {[E— £
Y Y Y
= max {la(2)| -}y 0(1).

The derivation of the estimate IV, (3.1) of the e.c.f. for paths of class A is now valid with

¥ (z) replaced by ¥, (z2).
However, for present purposes it is necessary to obtain a sharper estimate in the neighbour-

hood of z, = ia. Consider therefore the subregion Rj of the half-strip {z: |Re z| < }m,
Im z > 0} defined by |4(z)| < 4 sinh? a. By II1, §3, ,(2) (£ — &) is analytic on R}, which
contains z, in its interior; hence on R}, by the maximum modulus principle,

[¥1(2)] < MIE—£0| 4, (2.3)
where M = sup {|¢1(2) (§—&)¥|: ze Fr Rf}.

Integrating this, for any path y in Rf, gives

varf;ﬁl(z) d& < var ¥y(z)
Y Y

where Y,(z) = 3M(£— &)t

Now let z, z* be frontier points of R¥ and let £* be the value of £ corresponding to the
latter. Then from IV, (2.1) or IV, (2.8),

(- &) = (§* = &) 0(1), (2.4)

whence by (2.2) above, which is valid on R,
L. . Yi(2) = (% —£§)2 0(1).
Combining these results gives
M= (& -g)to(1).

Finally, if z is replaced by an arbitrary point of R,, (2.4) with the positive sign remains valid,

whence
Vy(z) = (£*—£)~ 0(1)

{(sinh a7t 0(1) if sinha > 1,

~ l(sinh 2)~2 0(1) if sinha < 1. (2.5)

There now exist paths to supplement class A (IV, §3), originating from coi and from

—1n4o0i, being + £-progressive, terminating at an arbitrary point of R,, and satisfying the

conditions of lemma 1 of part III and its corollary. The formula (2.5) provides an estimate

of the variation of the e.c.f. on these paths; for paths of class A not terminating in a point of
R,, it has already been seen that IV, (3.1) is valid.

(b) Asymptotic formulae

With the branch of { determined as in §2.4 (a), the formulae (2.124, b) can now be estab-
lished, the domain of validity of the former being provisionally restricted to the region

{zeQ:arg (- &) > —in} U R,
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MATHIEU FUNCTIONS OF GENERAL ORDER. V 141

The constant factors are obtained by substituting the appropriate argument in place of x in
the asymptotic formula (2.8) and by comparing the result with IV, (1.9) or IV, (1.10). A

further formula, valid on
{zeQ:arg (£—§&) < —}n}UR,

is yi(z+ 1) = 2nterEspd[edF (2) (1] {ebi™ Ai (RBle—3) + Ad 9}, (2.6)

which also has the remainder estimate( 2.13), and whose form is the complex conjugate of (2.125).

This formula and (2.124) can be used, with the aid of the connection formulae II, (4.1.2)
and (2.94) below, to establish the validity of (2.124) on the remainder of £. The method is
similar to that used in IV, §4(c¢) to derive the formulae IV, (6.3.4); in the same way, by using
the definition of y,(ix) (II, (4.2.2)) and the connection formula (2.95) below, (2.14) is obtained.
The majorant of the Airy function on the left-hand side of (4.94, b) is in each case, on the
relevant domain, the sum of the majorants of those on the right-hand side.

2.2. Other parameter ranges

Methods similar to those of §2.1 are used throughout, and only the case —2A% < A’ < 242
will be considered in any detail. Here, the transition point lies in (0, 4n) and the appropriate
region for the estimation of the e.c.f. is the strip {z: 0 < Re z < }=n}. The conclusion reached
is that the formula A* (IV, (5.1)) remains valid under the same conditions, but that with a
class of paths supplemented as in §2.1 above, the sharper result

vsrf ¥ (2) d§ = (sin 24)—2 O(1)

appliesif ze Ry = {z € Q:|4(z)| < }sin? 2a}.
With the branch of ¢ determined as in §2.4(5), the formula (2.154, b) can now be derived,
together with the formula

y,(—2) = 2ntePBRd[F(z) (] e-idnrhBE)elin Aj (F3Ledi™) 4+ Al 9}, (2.7)

valid on {z € Q: arg (§—£&,) > 2n} U Rf, with the same remainder estimate (2.16) (see figure
4, part IV). This formula is complex conjugate in form to (2.15a). By a method similar to
that used in IV, §4(4) to obtain IV, (6.3.1¢), the modified form (2.15¢) of (2.7), valid on
{zeQ:arg (§—£,) = $n}, can be derived.

Now define
¢ = D—(}n+hE),

estimates for which are giveh by IV, (6.2.4) and by (3.26), (4.14), (4.17) below. Then (2.154)
and (2.7), which is also valid on [0, r], together with the defining formula II, (4.3.6) for
y3(x) and the connection formulae (2.94, b), give (2.174). Similarly, but by using II, (3.6),
(2.17b) is obtained; this formula is not valid on (a, n] since yg(n —x) is recessive there. On
this interval, however, ® —x may be substituted for x in II, (4.3.6), and formula (2.1554) and
its conjugate used to estimate the result; this gives (2.17¢). These three formulae are com-
plicated; however, they can be simplified by replacing ¢ by zero, with some loss of precision
unless [cos a]~! is bounded. Indeed with this last condition, it follows from IV, (6.2.4) that
the effect of this substitution can be absorbed into the remainder term.
No new methods are needed for the case A’ > 242,
14-2
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142 W. BARRETT

2.3. Properties of Airy functions
These functions satisfy the differential equation

"

y" = xy.
The standard solution, characterized by its behaviour as x — 0o with |arg x| < =, is
Ai (x) ~ in—tx—tet, (2.8)

where ¢ = §a% takes its principal value on |arg x| < mn. The formula (2.8) is valid as x -0
with |arg x| < m—¢& (6 > 0). A second solution Bi (x), which with Ai (x) satisfies Miller’s
criteria, is defined by (2.94) below. Other solutions are Ai (xe+¥7).

(a) Connection formulae
Al (x) = e¥i® Ai (xe—3i7) 4 e—dim Aj (vebin), (2.9q)

Bi (x) = —iedi® Ai (ve~¥im) fie—¥r Ai (xelim). (2.90)

(b) Majorant functions
Defining ©(x) = min {1.12]x|~%, 1.29} gives

) . in-tlet|O(x) if |argx| < %m,
AL ()] < AT (x)={%u—%{|e—t|+|et|}@<x) it farg (=9 < 3n, O
. . - HellO() if |arg x| < b,
'B‘(")'SB“")={%n—%{|e—t|+|et|}@<x> it jarg (=) < gm0

If x is real and negative, |e~t| = |et| = 1.

2.4. Table of asymptotic formulae

Except for the variable ¢ introduced in each case below, the notation, and in particular the
interpretation of the expression O(1), follows that of part II, §4 and part IV, §6.

Majorant functions for Ai (), Bi (x) are denoted by Ai, Bi respectively (see §2.3(5)); the
argument is omitted, being in each formula the same as for the Airy function itself.

(a) The case ' < — 2h?

On Q define { = [3(£—&,)]3, with arg { = 0 when arg (£—£,) = = (see figure 3, part IV),
so that ¢ is real and positive if Re z = 0 and Im z > a.
(i) Complex variable. On £,

ya(2) = 2rtebmREHF(2) £ {Ai (158) + Al 7), (2.124)
yy(z—m) = 2nterEpd[elinF (2) ¢1] {e-Hr Ai (KBCedim) + Al ), (2.12b)

where, uniformly,
max {(sinh @)%, (sinh a)~2} if |4(z)| < }sinh%a
7 = k10(1) x1(4(z))"* if }sinh?a < |4(z)] < 1 (2.13)
(4(z))~* otherwise.
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MATHIEU FUNCTIONS OF GENERAL ORDER. V 143

(ii) Modified equation, ¢ < 0. If x > 0, then with z = ix, y,(ix) is given by (2.124) and
yo(ix) = m¥(sinh mu)~t erErpd[e™F (2) 3] {Bi (A3E) + Biy}. (2.14)

The factor in square brackets is real and positive, and 7 satisfies (2.13).

(b) The case —2h* < X' < 2h?

On Q define { = [3(£—&,)]3, with arg { = 0, when arg (£—§&,) = 0 (see figure 4, part IV),
so that ¢ is real and positive if z € (a, in].
(1) Complex variable. On £,

y,(2) = 2nterEipteidnthB)F(2) £ {e‘%"‘ Ai (KEge-#m) + A 9}, (2.15a)
yi(z—mn) = 2nterBrptetdn+hB [ F(2) (4] (Al (B80)+Aig} if Im¢E > (2.150)
y1(—2) = 2niferBipbe—idn B F(z) ¢H] {e¥® Ai (A3{edm) + Aig} if Im£ <0, (2.15¢)

where, uniformly,
[sin 2a]-2 if |4(z)| < % sin? 2q,
7 = h10(1) x{[4(2)]* if }sin?2a < |4(2)| < 1, (2.16)
[[4(z)]~t otherwise.
(ii) Ordinary equation, ¢ < 0. If x € [0, 3n] then with z = «x,
ys(x) = nre"ERd[F(2) ¢t] {cos ¢ Bi (h3) —sin ¢ Ai (h3() + Bi 7}, (2.17a)
ys(n—x) = nip*eMERE[F(2) ¢t] {sin @ Bi (h30) +cos ¢ Ai (H¥E) +Ain} if x < g,

(2.175)
ys(n—x) = 2nterEpd[F(z) {1] {cos ¢ Ai (BB +Ain} if x> q (2.17¢)

where 7 satisfies (2.16), = (1+]8])/8,

and ¢ — G (4n+hE) (2.18)

may be estimated by means of IV, (6.2.4) or V, (3.26) or (4.14,17). The factor in square
brackets is real and positive.

These formulae may be simplified by replacing ¢ by zero, but there is some loss of precision
unless (cos @)~ is bounded.

(iii) Ordinary equation, ¢ > 0. Formulae for ys(3n+x) valid on [0, in] are obtained by
substituting 3w —« for ¥ and for z in (2.174, b, ¢).

(¢) The case X' > 2h?

On £ define { as in (b) above, so that { is real and positive if z € [§n, $n +14] (see figure 5,
part IV).

(i) Complex variable. On £ the formulae (2.154, 4, ¢) hold but with # satisfying (2.13).

(i1) Modified equation, ¢ > 0. On x > 0, with z = in +ix,

ya(x) = nihd[ed"F(z) (] {cos ¢ Bi (K8C) +sin ¢ Ai (A3E) + Bi g}, (2.194)
yo( —x) = ntphd[ed"F(z) ¢t] {—sin ¢ Bi (lz§§) +cos ¢ Ai (B3) +Aig} if x > a

where g = || +5, (2.195)

yo(—x) = 2nte-Ept[ebnF (2) ¢F] {cos ¢ Ai (M30) +Aiq} if x < a, : (2.190)
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144 W. BARRETT

where 7 satisfies (2.13) and ¢ is defined by (2.18). The factor in square brackets is real and
positive. Simplified formulae are obtained by replacing ¢ by zero, but there is some loss of
precision unless |4(z)| = sinh? a O(1).

3. APPROXIMATIONS IN TERMS OF PARABOLIC CYLINDER FUNGTIONS
3.1. The parameter range —4h* < A’ < 0
(a) The Liouville transformation
The basic equation used is ITI, (1.9) with the positive sign and with u = £, so that, reference
being made to IV, (1.3) for the definition of £,
d¢  4[4A(2)]} _ 9 {/\’//12+2 cos 2z>%

£e p—

dz (gz—a)% (3.1)

If X’ > —2h? the transition points in the strip {z: |Re z| < =} are at z = +a (see IV, §6
for notation); since these points are required to map into { = + o, then by 111, (1.9a),

o = ;: _ [A(2)]} dz = 8;’? (3.1a)

This formula is also valid if A" < — 242, but £ and thus also « are then negative.

z-plane Z-plane
Ficure 1. The map z - §: —4h% < X’ < 05 (a) Y < —2k?; (b) A > —2R%

Since 4(z) is an even function, { = 0 at z = 0; the sign of the square root in (3.1) will be
determined so that d{/dz is positive at z = 0, when it is also real and positive on both real
and imaginary axes within the above strip. The map z — { is one-to-one analytic on the strip
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and is illustrated in figure 1, the two cases A’ S —2h2, corresponding to @ S 0 being shown
separately. The principal curves are indicated in both z- and ¢-planes, z, being defined as in
part IV, §2 or §6.1, with {, as the corresponding value of {; the stippled regions are shadow
zones for certain classes of paths, as indicated later.

The Mathieu equation II, (1.4) is transformed to

d*w/dg® = (§8—a) {*+¥u(2)} w,
where r,(z) is given by III, (3.44) and ¥(z) by IV, (1.75), while
y = G(z) w,
where G(z) = F(z) ({2—a)t
[ - g
| 4(2) © l4dz]|
the factor G(z) is regular and without zeros on the same strip, and the branch of the fractional
power will be chosen so that G(z) is real and positive on both axes.

(b) Estimation of the e.c.f.

The fundamental region £ maps into the first quadrant in the ¢-plane, and it can be shown
by means of III, (1.95) that on £,

[2—a]#1 0(1) if |E&—a > |«

aFHe -l 0(1) if |&—a| < |af; (3.2)

- = |

the proof is similar to the derivation of properties of the function f introduced in IV, §2.2.
From (3.2) and III, (3.44), it follows that '

Ya(2) —¥(2) = 3(—a)2+5(8—)°
= [£-8]*0(1)

uniformly. Hence also, by IV, (2.7), which is valid on the whole of £ for the parameter range
under consideration,

¥a(z) = [£-£]72 0(1), (3.3)
so that varj Vo(2) dE = var {(§—&,)1} O(1), (3.34)

corresponding to IV, (2.134), and the results of IV, §§2, 3 are valid for ¥,.
The required sharper estimate can be obtained on the fixed subregion

Ry = {zeQ: |sin z|‘ < 1}

Since [sin zy| < 3, |4(2)|~! = O(1) uniformly when |sin z| = 1, whence from IV, (2.8) and
from (3.2), (3.3) above,

(£2—a) ¥a(2) = 0(1) (3.4)
uniformly on the portion of the curve {z: |sin z| = 1} which lies in 2, and hence by symmetry

on Fr R¥, where R¥ is the union of R, and its three successive reflexions in the axes. But accord-
ing to III, §3, this function is analytic on R}, whence by the maximum modulus principle
(3.4) is uniformly valid on R}.

14-3
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Integrating gives

var f Ya(z) d€ = var {arcsin ({a—3)} 0(1)

on any path in R¥. This is not satisfactory, however, since for fixed § # 0, arcsin {a? is of the
order of |In «|, so that its variation does not remain bounded as « - 0; the following device
overcomes the difficulty. The function

EH(E - ) Yra(2) +afp(0)}

is also analytic on R} and is uniformly bounded on its frontier; it is therefore uniformly bounded
on R¥. It follows that

Yo(2) dE/dE = (£—a)~F {£ O(1) —ayfy(0)},
whence fg/rz(z) d¢ = O(1) 4+ a arcsin ({a—3),(0).

The next step is to calculate ,(0); this can readily be done by means of IV, (1.74) and III,
(3.44), which give
¥2(0) = —1(A=-A")/4(0) +3[4(0)] 72— 2072,

Expansion of the integral £ in powers of 4(0) gives
a = 8E/n = —44(0) +}[A(0)]2+[4(0)]* O(1),
leading to Ye(0) = (A=2A"+3) a1+ 0(1).

Thus, f Valz) dE = 0(1) (3.5)
£=0 :
on R¥ provided that A’ is determined so that
XA = 3+|lnal-0(1), (3.54)

the natural choice being A’ —A = }.

By means of (3.34) and (3.5), the paths of class A introduced in part IV can now be supple-
mented (cf. §2.1(a) above) by paths y originating from infinity in the same manner and
terminating in an arbitrary point of R;.

For such paths,

virfg/rz(z) dg = 0(1).

In both the cases A’ S — 2A2, the domain accessible from either coi or }n +o0i is the whole of
Q. If |sin z| > 1, |4(z)|~! is bounded, and hence for the extended class of paths, by means of
IV, (3.1) or IV, (5.1) together with the above result,

[4(z)]"t 0(1) if |[sinz| > 1,
O(1) otherwise.

vgrf;ﬁz(z) d¢ = { (3.6a)

For suitable progressive paths originating from —n+o01i or from —ooi and terminating in
an arbitrary point of £, apart from certain shadow zones, or at }n +001i or coi respectively,

varf;ﬁz(z) d¢ = 0(1). (3.60)
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In the first of these two cases, (3.6a) in fact applies if arg (§ —&,) > $n; in neither case is
it valid elsewhere since the path must pass through the region R¥.

The shadow zones, not accessible by &-progressive paths, arise for paths originating from
—in4+oiif I’ > —24% and from —ooiif A’ < —242; they are illustrated in figure 1.

(¢) Asymprotic formulae
On introducing the notation k = 2hE/n = }ah,
the appropriate substitutions into the asymptotic formula (3.13) are
e-dinghd k, —h(E4+E,) for =x,a,t

respectively; the last of these three depends on the conditions (3.124) and on the values of &,
or of £(0) according to the sign of x (see figures 3, 4, part IV). The result is

Uk, —ight) ~ ebe|x|[}h({2 — )] teretEn

as z - ooi, the parabolic cylinder function being a solution of the basic equation III, (1.9).
Comparison with IV, (1.9) shows that the corresponding solution of the Mathieu equation
is a multiple of y,(z), the constant factor being determined at the same time. This leads to the
formula (3.20a), the remainder estimate being a consequence of (8.6a); the companion
formula (3.205) is obtained similarly.

If z > in+o0i with Re z = 1x, the exponential approximations required by the method of
ITI, §4 for the estimation of connection coefficients are available from part IV. If « < 0, the

formula gy (a4 m) = eintrinet (|| fe) 4G 2) (U(—x, ~ B+ U ), (3.7

which in form is complex conjugate to (3.2054), but with — ¢ in place of ¢, is valid when
Re z = {n with 9 = A1 O(1); with (3.20a) and the connection formula (3.114), this leads
to (8.18) as a refinement of IV, (6.2.1). If « > 0, a corresponding formula for y,(—z) leads
to the refinement (3.19) of IV, (6.2.3). No improvement is possible for the estimates IV,
(6.2.2), (6.2.4) for the phase parameter @, though in the parameter range considered here
the remainder term is always 2~10(1).

The construction of formulae for real bases again calls for separate consideration of the
cases k = 0.

When « < 0, and z = ix (x > 0), (3.7) is valid with 7 given, as in (3.2054), by (3.21); the
connection formulae (3.115) and II, (4.2.2) give the formula (3.22) for y,(ix). For the ordinary
equation, the formula (3.23) for the characteristic solutions can be found by the method used
in IV, §4(¢), but by using the formulae (3.7) and (3.204) for y,(z + n).

When « > 0, the formulae given in §3.4 for y,(—ix) and for y4(x) and y,(% —x) are obtained
by similar methods.

In neither case can the formulae of part IV for modified functions with ¢ < 0 be improved on.

(d) A lemma
The following is required in part IV, §4(5).
Lemma 1. Let & > 0. Then there is a constant k > 0 such that provided |A| > k,
1) |[A+2k% < 8 =¢o(q) < A < ay(q);
(i) A+282 < &= e = A" O(1) uniformly.
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Proof. The symbol k will be used to denote a generic constant, to which in each case a suitable
value must be assigned; it is further assumed whenever necessary that |A| > k. Define A’ in
accordance with (3.54) by A’—A = {, and without loss of generality suppose & > 1.

If |[A+2h?| < 4, then a simple estimate gives

hE = [(A"+2h2)/Rk] O(1),
whence by IV, (4.6), with n = 0,
arg f = in+O(h™). (3.8)
Hence if & > £, then arg f# > 0, A > ¢,(¢) and II, §4.3 is applicable.
If A+2h% < &, A’ +2h2 > 0 and & > £, then by (3.19)

B = e~E: O(1); (3.9)

hence arctan f < i, and by (3.8), arg # < mw—arctan £ and from table 2 of part II, §4.3,
A < ay(q).

If A"+ 2h% < 0, then A = A’ —} < —2h% < ay(q), which completes the proof of the first part
of lemma 1.

Next, with the same conditions as for (3.9), by II, (4.1.5), cosh(nu) = (f~2+ /) sin arg 8,
whence by (3.8), (3.9), (cosh nu)~1 = e~2E1 O(1).

If '+ 2h? < O, but with |A| > £ only, in place of & > £, the same conclusion follows from
IV, (6.2.1).

Finally, over the complete range A+ 242 < & < ay(¢) we have e™ = (cosh nu)~! O(1) and
another simple estimate gives [AE;]~* = |A|~* O(1), whence the second part of the lemma follows
without difficulty.

3.2. The parameter range 0 < A’ < 4h?

It is now more convenient to define { by

d¢  4[4(2)]F 0 N /h% 42 cos 22\ }

dz ~ (a—-00)F f—a ’
in place of (3.1), where now o = 8E,/n

and { = 0, d{/dz > 0 when z = }rn. The relevant transition points are now at z = z, ©— 2,
in [}n, $n] if A’ < 2A% and on the line {z: Re z = in} if A’ > 2k% The map z — { is one-to-
one analytic on the strip {z: 0 < Re z < n} and is illustrated in figure 2, with principal
curves, in the separate cases A’ £ 2h2.

The Mathieu equation transforms into

d?w/d8? = (a—8%) {R2+v5(2)} w,
where y=G>2)w
with G(2) = [(a—)/A(2)]} = [} dg/dz]H,

the fractional powers being determined so that G(z) is real and positive in both axes within the
above strip. The basic equation is now III, (1.9) with the negative sign, and the basic functions
are modified parabolic cylinder functions.

Provided A’ satisfies (3.54), there are paths similar to those introduced in §3.1 above, orig-
inating from ooi or from }r+ocoi and terminating in an arbitrary point of £, for which the
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estimate (3.64) is valid if sin z is replaced by cos z. No new problems arise in connection with
the formulae (3.274, ) for y,(z), y,(z — ). For the phase parameter @, the formula for y,( — z)
obtained from (3.275) by substituting = — z for z and — ¢ for { is needed; in the remainder,

7 = h"10(1) on L.
7
__.% I\
7 Y

A\

7,
——
i g\o
z-plane {-plane
FiGure 2. The map z - §; 0 < A’ < 4h2; (a) A’ < 2h%; (b) A/ > —2h%

(@) 7

NN
(=]
&

e
~

—_
Qo
~

A R Y

=
A

For yy(4n +x) and y,( + x) as defined in II, (4.3.6), (4.3.17), a similar formula for y,(n — z)
is also needed, as well as the connection formulae (3.15a, 4) for the modified parabolic cylinder
functions W(a, +x). The only feature of the calculations that seems to call for comment is
that the remainder term of the formula (3.25) for @ introduces a term O(k~1) into #; this term
does not affect the remainder estimate for y,, but for y, it means that the estimate (3.28) is not
applicable.

3.3. Properties of parabolic cylinder functions

The notation used is that of Miller (1952) and the formulae are taken with some adaptation
from Abramowitz & Stegun (1964), except that the second function U used here does not
appear in those tables; the relation between U and the alternative solution V are taken from
Miller (1952). Symbols used for variables and parameters are local to this section.

(a) Ordinary functions
These satisfy the equation y" = (}z%+a) y,
where the parameter a may be real or complex. A solution characterized by its asymptotic

behaviour as |z| - co with argz = 0 (|0] < in)

is Ula, z) ~ exp (—}z%) z-o-4, (3.10)
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this formula remaining valid if |z| - co with |arg z| < 3n— 6 (& > 0); other solutions are
Ua, —z), U(—a, +iz).

An essentially different solution U(a, z) is defined by (3.115) below, except when a—} is
a positive integer or zero. If a is real and negative, U(a, x) and Ul(a, x) are oscillatory on the
real interval {x: |¥| < 2|a|?}, with the same amplitude and with phase differing by 3=, while
if x > 2|a|? they are exponentially decreasing and increasing respectively.

Two connection formulae are

Ua, z) = (2n)F I'(} —a) {e"Ga+d U(—q, iz) + e™datd U(—q, —iz)}, (3.11a)
U(a, z) = (2n)~% I'(} —a) {e-"da=b U(—gq,iz) +erdo—D U(—q, —iz)}. (3.110)
Let the parameter a be real and define

¢ = f (122+a)t dz, (3.12)

with the branch and particular integral determined on the plane cut along the interval
[—2(—a)}, 2(—a)¥] by the conditions

(1) ¢1s real and positive if arg z = 0 and 22+4a > 0,} (3.124)
12a
(ii)) Ret =0 when 2z =0.
Then Ul(a, z) ~ eta|a|-4o (22 4+ 4a)-t et (3.13)

as z - oo with |arg z| < $n— 48 (& > 0), the fractional power being real and positive as z - oo
with arg z = 0.
This formula is obtained by the L.—G. method; to determine the factors depending only on
a, (3.12) is integrated explicitly, giving
t =%1z2+%a+alnz—4aln |a| +0(z72);

this is substituted into (3.13) and the result compared with (3.10).

(b) Modified functions with real parameter
These satisfy the equation Yy

4

= (-12+a)y,
where a is real, which has solutions
U(Fia, zett®), U(Fia, zeFin),
The connection formula (3.114) becomes
Ulia, ze ") = (2m)-% I'(} —ia)
x {e~tineira [U(—iq, zetir) 4 elire—dna U(—ia, —zetin)}, (3.14)

with a similar complex conjugate formula.
For real variable x, a real solution introduced by Miller is

W(a, x) = (3k)} etirafedinthits U(ia, xe—1r) 4 e-¥r—dide U( —ia, xeli™)}, (3.15)
when W(a, —x) = —i(2k)~t etrafedintide U(ia, xe—1r) — e-din—dide U(—iq, xetl™)},  (3.154)
where EE = /(1 +e¥) F e
and ¢y = arg I'(} +ia). (3.155)
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If a > 0 and |x| < 24}, these solutions are exponential in behaviour, the former being
decreasing; otherwise they are oscillatory with phase differing by }=.
Let ¢ be defined by (3.12) with conditions (3.12a), but with — a substituted for a throughout.
Then the formula corresponding to (3.13) is:
U (ia, ze#7) ~ ebinehia|g|-Hae—ira(22 _4q)-1 eit (3.16)
as z—>oo with —in+d <argz<n—-¢ (6> 0),

the fourth root being real and positive as z — oo with arg z = 0. The formula obtained by
substituting —i for i is valid on the complex conjugate domain.

3.4. Table of asymptotic formulae

For definitions of symbols not defined here, and in particular the interpretation of the
symbol O(1), see part II, §4 and part IV, §6. Throughout this section,

A=A =4
3.4.1. Thecase —4h2 < A’ < 0
(a) Auxiliary parameters
Define k = 2hE/m,
o = (2m)} (|«|/e) [L(|x|+3)] (3.17)
Then 2t <o <1
and 0 < In o+|(24k)|~! < |(360«3)|~L.
(i) IfA" < —2h2
2 cosh (np) = oe®Ba[1+ O(h™)] (8.18)
and @ satisfies IV, (6.2.2);
(i) If A > — 2482
f = ce~?E[1 4+ 0(h )] (3.19)

and @ satisfies IV, (6.2.4).

(b) Complex variable
On the strip {z: |Re z| < in}, define the variable ¢ by
. dg A'/R2+2 cos 2z)}
e e =l
where & = 8E/n = 4« /h is real, and is positive (negative) if A’ > (<) — 2Ak2;
(i) ¢ = 0 and d{/dzis real and positive when z = 0.

‘The map z — { is one-to-one analytic on the strip and is shown in figure 1 (§3.1).
Define also the transformation factor

G(z) = [4d¢/dz],

real and positive on [ —4n, 7] and on the imaginary axis.
In the following asymptotic formulae,
O = h#|G(z)| min {|h8>—4x|L, k%, 1}.
Then on 0, ' ‘
y1(2) = e Pi(|k|/e)¥ G (z) Uk, —ik¥E) + @ ), (3.204)

Yi(z—m) = e "d+ioerBi(|k| /e)-WhIG(2) U(—«, ) + O 4, (3.205)
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where, uniformly,

_ {[A(z)]"«lf A10(1) if [sinz| > 1 (3.21)
h=10(1) otherwise.
(¢) Modified functions, ¢ < 0
If x > 0, with z = ix:
(i) if k < 0, y,(ix) is given by (3.20a) and
yo(ix) = (2 sinh mp)-1 {e"Pio(|k|/e)¥* G (z) U(k, —ih¥l) + Oe " 7}, (3.22)

where 7 satisfies (3.21);
(ii) if k > 0, y,(ix) is again given by (3.204) while y,(—ix) is obtained by substituting — ¢
for ¢ in (3.204), but with remainder
e Ei@e~m h~1 O(1).
(d) Ordinary functions, ¢ < 0

If x € [0, }x], with z = x:
(i) if x < 0,

me (+x) = (sinh nu)~! e"Z1(|k|/e)HhG(2) U(—«k, FhEL) +e"Er@et T g5 (3.23)

ys(x) = e Mo (x/e)HhiG(2) U(~k, k) + Oeé g, (3.244)
yg(m—x) = erBi(x/e)¥hG(z) U(—«k, ) + Oe "y, (3.24b)
where in each case 4 = A~10(1) uniformly.

(¢) Ordinary and modified functions, ¢ > 0

The former are obtained from () above by substituting 4n — x for x, while for the latter, the
formulae given in part IV, §§6.3(¢), 6.4 (¢) have satisfactory remainder estimates.

3.4.2. Thecase 0 < A’ < 4h2

(a) Auxiliary parameters

Define ky = 2hE, /7,
oy = (2n)} (e¥imk Je)ia [ (4 +iky)] N (3.25)
Then arg oy ~ —(24ky)"1 as «; > 100, sgnarg o; = —sgn K,
and 0 < |arg oy < min {(22]«,|)~, 0.022};

f is given by IV, (6.2.3) and
& = in+inc,—Largo;+0(h) uniformly. (3.26)
(b) Complex variable
On the strip {z: 0 < Re z < §n} define the variable { by

[} .%
Q) a¢ _ 9 A'/h?+2 cos 2z ,
dz —a
where @ = 8E,/n = 4k, /h is real, and is positive (negative) if A’ < (>) 2A%;
(ii) ¢ = 0 and d{/dz is real and positive when z = 0. The map z - { is one-to-one analytic
on the strip and is shown in figure 2.
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Define also the transformation factor
G(z) = [3d¢/dz]4,

real and positive on [0, n] and on {z: Re z = }=r}.
In the following asymptotic formulae,

O = ht|G(z)| min {|hL2 —4k,| %, «77%, 1}.

Then on 2:
ya(2) = eB) (|1, | fe) b embis BRG(2) U —iky, —cHHhAE) + Oy, (3.27a)
yi(z—m) = e ED (|k,| /e)bic e~tapdG(2) Uliky, e~#"h3E) + O cosh [Re (h€)] 9, (3.27h)
where uniformly {[A(z)]—% R10(1) if |cos z| > 1 (3.28)
~ A10(1) otherwise. '
(¢) Ordinary functions, ¢ > 0
If x € [0, }n], with z = x+ i,
ys(dntx) = (3h)E MG(2) W(ky, TREE) + Oy, (3.29)
where k= (14+e )i,
(d) Modified functions, ¢ > 0
If x > 0, with z = §n+ix,
ya( %) = (3k)F WG(2) W(—ky, FikEE) +e10ehE2h-10(1), (3.30)
where ’ ky = (1+e%a)t e
d £ {—El if A > 2h?
- Tl if A< o

(¢) Ordinary and modified equations, ¢ < 0

The former are obtained from (¢) above by substituting 4n —x for x, while for the latter, the
formulae given in part IV, §§6.3 (), 6.4 (b) have satisfactory remainder estimates.

4. APPROXIMATIONS IN TERMS OF BESSEL FUNGTIONS

4.1. The parameter range ' > 4h?
(a) The Liouville transformation

The basic equation used is ITI, (1.10) with the positive sign and with « = 4, so that

d¢ _ 2[4(2)]?

5 = 4.1

dz  a(1+¢2)% (4.1)
The transition points to be taken account of are at z = +}n+ia, to be mapped into

¢ = Firespectively. Hence by III, (1.104),

1 (in+ia ‘

- 2[4(z)]2 d

nf—%nﬂa [ (Z)] 2

2E/r. (4.1a)

o
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With the correct choice of branch in (4.1), the halfstrip {z: |Re z| < §n, Im z > —a}
maps one-to-one info the right half-plane of {. Moreover, the map z - { extends analytically
to the half-plane {z: Im z > —a}, except for branch points on the frontier where Re z =
(n+3})m, and {2 has period =; in particular, the half-strip {z: |Re z| < &, Im z > —a} maps
one-to-one into {{: |arg {| < =}. Figure 3 illustrates this map, with the principal curves issuing
from zy = +}n+ia.

0 e
ycdZi’za

z-plane ¢-plane

Ficure 3. The map z - {: A = 44%

The Mathieu equation transforms to

d*w/d8? = {a?(1+£7%) [+ Py(2)] - 26 w, (4.18)
where r3(z) is given by III, (3.54) and in the latter y(z) is given by IV, (1.75), while
y = H6(2) w,
where G(z) = [-(1+8)/4(2)]%

is analytic and without zeros on {z: Im z > —a}, and is real and positive if {2 is real.

(b) Estimation of the e.c.f.

The precise definition of ¢ is essential to the effectiveness of the method; nevertheless it can
be approximated by the simple formula

af = e*[1+e4%~2 0(1)], (4.2)

where ¢ = e~2%, which is uniform on {z: Im z > —a} and over the prescribed parameter
range. Indeed, adapting IV, (2.24) one obtains

§ =—e{t—§(1+e 1) 714 0(t2)}
as ¢t - co; similarly from III, (1.105)
£ =—a{f—-351+0(87)}

as { —co. In each case the symmetry properties of the map ¢ — £ or { - £ are used to deter-
mine the sign and the constant of integration; the branch of £ is that defined in part IV, §1.
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By comparing these two expressions it can be seen that { - co as ¢ - co and that
taf—eu) = O(1) as t—>o0,

this expression being an analytic function of ¢ on {¢: |f| > e~22}. Next, an explicit integration
of ITI, (1.104) with |arg ¢| < }n leads to the estimate

= 2e1¥2[1+0(1)] as [¢ — 0.
But if Im z = —a, then |{| = e2%¢ and Re { = —2E; > 0, so with the aid of the estimates
E, = —e?a+0(1)] and a = e?[1+0(e~2%)], we find
[¢] = e22 0(1),

which leads to the estimate
tHaf—e%) = e 2 0(1) if |f = e

Finally, applying the maximum modulus principle to this function on the domain {¢: || >
e~2¢}, with point at infinity, gives (4.2). As an immediate corollary,

¢ =t[1+0(e29)]. (4.2q)
Similar methods can now be applied to the estimation of ¥3(z). From (4.2) and IV, (2.6),
P(2) ~ A=A =) e ~ (A=N' =) a=2¢-?

as { - oo. But the second term in III, (3.5a4) is asymptotically equal to ta=2{~% as {— oo,
whence provided that A’ — A = 0, since ¥4(z) is even and analytic as a function of ¢ or of ¢,

¥a(2) £ = 0(1) as {—oo.

Next, if Im z = a— & where ¢ > 0, and hence also by symmetry if Imz = —a+94, it
follows from IV, (2.7) and IV, (2.1) (see also IV, §5.1) that ¥ (z) = e~22 O(1). But with
Im z = —a+ 4, the second term in III (3.54) is e~ O(1), so that ¥3(z) = e~22 O(1). Thus,
by a similar application of the maximum modulus principle,

¥a(2) E4(1+E7%) = e 0(1)
uniformly on {z:Im z > —a+ 4}, this function being analytic on {¢:|f{| > e~2¢} and at
infinity. -
Hence ¥3(2) dE/dE = ra(2) a(1+§2)E
— e-sa(1 4+ £-2)~} £ O(1) (4.3)

uniformly on the same region. Integrating this shows that for paths y originating from infinity
in the ¢-plane with terminal point z such that Im z > —a+ & and satisfying the conditions
of lemma 1 of part III, §5 and its corollary,

g2 if |
&E ot |g
By (4.2a) above, { may be replaced by ¢ in this formula.

: - > 1
varfw/r3(z) d§ = e%* 0(1) x { | (4.3a)

y | <1
Figure 1 of part III and the accompanying text indicate the region accessible from coi in
the z-plane by §-progressive paths, but the present analysis only applies to that part of the
region on which Im z > —a+ 4, which in particular excludes the transition points in the

lower half-plane. Provided Re z, or equivalently arg ¢, is uniformly bounded, paths consisting
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of an unbounded initial arc on which Im £ is constant, followed by a finite arc on which Re £
is constant, satisfy the necessary conditions. The corresponding paths originating from m +oc0i
and the region of accessibility are obtained by displacement through =.

(¢) Derivation of asympiotic formulae

The basic functions have the form
(k§)E Z, (),

where k = ha = 2hE/n, and Z, denotes a modified Bessel function of order x. The formula
(4.154a) follows readily with the aid of IV, (1.9) and (4.8a) below; the remainder estimate is
obtained from (4.34) above and an estimate for x. The domain of validity includes the
half-strip {z: |[Re z| < =, Im z > 0}. To obtain (4.15b) substitute z— = for z and {ei" for &.

The remainder estimate shows a substantial improvement over IV, (6.3.2) which applies
to the corresponding formulae of IV, §6.5, both for large and for small values of Im z, and
not merely in the neighbourhood of the transition point. However the factor O(1) is not
uniform with respect to « unless « is bounded away from zero; this is because the factor O(1)
in III, (2.3a) relating to the form of the majorants, and hence in turn the constant ¢ in III
(1.5a), would otherwise not be uniform.

The problem now is to obtain a formula for y,( — z) valid on the same region; this may be
done as follows. Comparison of (4.94) below, «, ¢ being substituted for », x and correspondingly
— h& for vt, with IV, (6.4.1¢), which is valid when A > 442, suggests the construction of a solution

y(2) = k¥G(2) {L(xE) + 1, 1} (4.4)

corresponding to the basic function (k&)* I (x&). The required paths are — g-progressive,
and if the initial point is on the real axis of z, the accessible domain is the complete upper half-
plane; by means of (4.3a) with § taken at the initial point,

7 = kle~%e O(1).
If, now, exponential approximations can be obtained for this solution and for y,( + z), valid
on [—mx, ] and with satisfactory remainder estimates, the method of III, §4 can be used to
express y,( — z) in terms of the other two solutions.

Therefore let z € [ -, n] so that |t = e~® and |arg ¢| < n. Then it follows immediately
from (4.94) below that

y(2) = ekin(2m)~} (%)= F(2) e[ 1 + ke O(1)].
In the same way, from (4.154) and (4.95) (which see for the definitions of o*, ¢,),
¥1(2) = ed"o*F(z) e¥[1+¢,0(1)],

where in addition to the previous substitutions, e=® is substituted for x in the formula for ¢;;
this is justified by (4.24). Substituting — z for z and in consequence — £ —2E, for £ (compare
the method of IV, §4 (a)),

y1(—2) = ellrg*e2hEr F(z) e~"[1 +¢,0(1)].
From these formulae it follows by III, §4 that
p(—2) = (2m)} (0%)2 e 251 [1+6,0(1)] y(2) +6,0(1) yy(2). (4.5)
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From this and (4.4), (4.15¢) follows and is valid on the above half-strip; by comparing ¢,
with the estimate for 7 in (4.4) and also by means of (4.154) and the asymptotic formulae
(4.8a, b), it can be shown that the terms involving €; in both coefficients in (4.5) can be ab-
sorbed into the final remainder term. The formulae (4.144, b) for f, @ are now found from
(4.76) and II, (4.3.2) by using (4.154, b, ¢).

Finally, for y,( +x), (4.16a) is constructed by means of the defining formula II, (4.3.17)
and (4.7¢) below, and (4.165) is obtained similarly from (4.7d) and II, (3.13). However the
latter is not valid with the remainder estimate given if ¥ < a, since y,( —x) is recessive as x
decreases on this interval. Instead (4.15¢), and a formula for y,(n — z) obtained from it by the
appropriate substitutions, are substituted into II, (4.3.17) with ©— z in place of z in this last;
replacing ¢ by zero gives (4.17¢) without affecting the remainder estimate.

0 3
T 0000000004

z-plane Z-plane
Ficure 4. The map z — §: A < —4h%

4.2. The parameter range A’ < — 4h?
The basic equation is now III, (1.10) with the negative sign, so that

d¢ _ 2[4(2)]}
dz ~ a(1-g2)¥
where
n+ia E
a = Efla v2[A(z)]% dz = -2—1—5—-1

With the correct branch and constant of integration, the half-strip {z: |Re z| < n, Im z >
—a} again maps one-to-one into {{: |arg | < =}, but this time with z = ie, F n+iz mapping
into § = 1, et respectively. The map and principal curves are illustrated in figure 4.

The Mathieu equation now transforms to

d*w/d{? = {a®(1—§2) [A2+¥y(2)] - 6% w,
with the corresponding expression III, (3.5a) for y;(z), while
y =Gz w
G(z) = [-(1-83)/4(2)]}

as before, but
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which is again analytic on {z: Im z > —a} and is real and positive on both axes in the {-
plane. The expression (4.2) for {in terms of ¢ = e~%~i¢, and the estimate (4.34) for the variation
of the e.c.f., remain valid.

The formula (4.18a), where k; = 2kE, /=, is readily established. The whole of the half-
plane {z: Im z > a} is accessible by &-progressive paths originating from ooi, and if [§| < 1
the only restriction required for the validity of the remainder estimate (4.19) is that |Re z|
should be bounded. However, if |§| > 1 and |Re z| > =, the condition of the corollary of
lemma 1 of part III cannot be satisfied with z* as the terminal point of the path, and (4.19)
must be replaced by 7 = k-le-1a O(1).

For the reason indicated in §4.1 above in relation to «, it is always necessary that &, should
be bounded away from zero.

By substituting n — z for z and {e'" for { in (4.184), (4.185) is obtained. Similarly,

n(z+m) = (2k1/m)t G(2) Ky, (6, Le™) [1+x77ee O(1)] (4.6)
as z > n+ooi. The connection formulae II, (4.1.2) and (4.104) below now give
cosh (mu) = cosh (nky) [1+«x7te™22 O(1)],
from which (4.175) follows.
The estimation of the phase parameter @ is more difficult; it can be combined with the

construction of a formula for a characteristic solution. By II, (3.14), with (4.185), (4.6) and
(4.17a),

Me,(2) = (2k;/m)? (sinh 2mp)~* G(2) {€™1[Kiy, (k1 Ee77) + K 9] — ™4[ Ky (k1 §) + K 7],

et 01) i [¢] > 1
N Ne = {/qle“‘“éf‘z 0(1) if |§| <1

where

Now by (4.104) the principal terms in the expression in curly brackets combine to give
27 cosh (k) L, (k1 §),

and it is found that the contributions from the majorant functions combine correspondingly.
Using the formula above for cosh (mu) gives the result

Me,(z) = i(sinh mp)=! (2, )% G(2) {fi (11 §) + 1 0}

with the above formula for .

The next step is to derive from this, by means of (4.124), the following formula in terms of
e, valid on a bounded interval in the real axis of z, £ being defined by continuation from
[0, 3m]:

Me, (z) = ei*(sinh np)~! e™i(of) 1 F(z) e[1+k7te—22 O(1)].
Since on the real axis of z, Im £ = E, and @ = arg Me_(z), @ is given by (4.17¢). The
remaining formulae of §4.4 (5) present no new difficulties.

4.3. Properties of Bessel functions

Notation is standard, and the formulae are taken with some adaptation from Abramowitz
& Stegun (1964), with the exception of (4.94), which appears to be new. Symbols used for
variables and parameters are local to this section.
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(a) Ordinary and modified functions of real order v

(1) Connection formulae:

2 cos (nv) K, (x) = K, (xe ") + K, (xei"), (4.7a)
L(x) = (mi)~1 {e7i™ K,(x) — K,(x¢ei)}, (4.75)
J,(x) = (mi)~! {e=3™ K (xe—Hr) —ebiv K (xedim)},
(x) = ()1 febim K, (ve-br) o8| e
F(x) = —n-ifebw K, (xe-bir) 4 ebi® K (ved)), |
Lxc") = e™L(x); J(x) = b [(xcbm). (4.7d)

(i1) Asymptotic formulae: Define
t=f(1+x-2)% ds,

the branch and constant of integration being determined so thaton {x: |¥| > 1},¢ = x+ O(x™1);
¢ is then an odd function of x. Then

K,(vx) = (3m) v=3(1 +42)~ et [140(1)] (4.84)
as x>0 with |argx| < §n—¢
and L(vx) = (2n)~tv—3(1 4421 et [1+0(1)] (4.8b)
as x —> oo with |arg x| < n— &, where & > 0.

If |x| < p < 1, and ¢ is defined by continuation along the real axis with argx = 0, then
t = Inx+0(1). Then
L(vx) = (2n)~% [o*]2 v=3(1 +x2)~t e [1 41142 O(1)] (4.9q)
and

K,(vx) = 3m)t o*v-3(1 +x2)-t et (1 4¢,), (4.90)
where
y142[0(1) +min {[ln 2], (v— 1) O(1)] if » > 1,

€, = {v¥®[0(1) + min {|ln x|, (1—v)1}0O(1)] if v <1,

x[0(1)+|lnx| O(1)] if v =1.
In these formulae,

o* = 2n)F I'(v) vt~ = 1 -0(vY); (4.9¢)

the term and the factor O(1) are uniform on {x: |¥| < p} and are also uniform with respect to
v provided v is bounded away from zero.

(b) Modified functions of purely imaginary order iv (v > 0)

(1) Connection formulae:

2 cosh (nv) Ky, (x) = Ky, (xe ™) + Ky, (xel"), (4.10a)

2 cosh (nv) Iy, (x) = (ni)~1{et™K;, (veI") —eT K, (xei™)}. (4.105)
| (i1) Asymptotic formulae:
With t = f (1 —x-2)b dx
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defined on {x: |x| > 1} so that { = x+ O(x~1) as x > o0:
Ky (vx) = K_j,(vx) = (3m) v3(x2— 1)t et [140(1)] (4.11a)
as ¥ > oo with |arg x| < 3n—¢
and L, (vx) = (2m)~F v3(a2—1)-tet [140(1)] (4.11)

as x > oo with |arg x| < in— 0, where & > 0.
Also, when |x| < p < 1, the branches of ¢ and of the fractional power being defined by
continuation along the imaginary axis with arg x = m,

L(vx) = (2n)~F [oF] 2 e-timp—tew(1 —x2)~-t et (1 479), (4.124)
where 7 = v1x% 0(1)
and o¥ = (2m)~F I'(iv) e¥(chinp)iv, (4.120)
Then of =1+0(»') and |o¥| = (1-e2™)-L

4.4. Table of asymptotic formulae

For definitions of symbols not defined here, see part II, §4 and part IV, §6. Throughout this
section

A=A
4.4.1. The case A > 4h?
(a) Auxiliary parameters. Define
K = 2hE/m,
/ | (4.13)
o* = (2n)-% e"K%‘KI’(K).J
Then k>0, o* =1+x10(1)
and B = [0%]2 e=2B1 (1 +¢,), (4.144)
D = In+hE+e,, (4.145)

where
k~le~2¢[0(1) +min {a, 1/(k—1)} O(1)] if « > 1,
€1, €6 = 1k71e72%[0(1) +min {a, 1/(1—k)} O(1)] if x < 1 (4.14¢)
e 29[0(1)+a O(1)] if k=1,
provided that « is bounded away from zero.
() Complex variable. On the region {z: Im z > —a} define the variable { by

() 35 = X [4(2)/(1+ £k

(i) ¢ = et¥* when 2z = Fin+ia

The map z — {is analytic on the region and is one-to-one if [Re z| < ; it is shown in figure 3.
Define also the transformation factor

G(z) = [-(&+1)/4(2)]3,

real and positive if 2 is real.
In the following asymptotic formulae,

O = G(z) min {|2+1|2, «¥}.
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Then on Q: y1(2) = (2«/n)¥ G(z) K (k&) +Oe 9, : (4.15a)
yi(z—m) = (2k/m)t G(2) K (kEe™) +Oe 1, (4.155)
y1(—2) = (2nk)? [0%]2 e~ErG(2) L (kE) + e~ 2Er@e M ¢y, (4.15¢)
3 f >
where uniformly, 7 = k-le4e O(1) x {€ ' :é: _ (4.15d)

and e, satisfies (4.14¢), all provided that « is bounded away from zero. The approximation
{ ~ t =e*% may be used in (4.15d) but not in (4.15a, b, ¢). By using also the fact that
k ~ At and €27 ~ A/A% as A/A? > oo, alternative equivalent expressions for 7 may be obtained. In
particular, an estimate which is not explicitly dependent on z and which is therefore weaker is

7 = A-320(1).
Subject to « being bounded away from zero, this is valid even if £ — 0, as also is (4.15d)
itself.
(¢) Modified functions, ¢ < 0. y,( +ix) are given by (4.15a, ¢) above.
(d) Ordinary functions. The formulae IV, (6.4.5) (see IV, §6.5(¢)) can be modified by the

insertion of a factor o*, the factor #* being removed; # then satisfies the formula (4.14¢).
(e) Modified functions, ¢ > 0. If x > 0, with z = }r +ix, then

Ya(x) = (3nc)? G(z) {—cos pY, (i) +sin @J, (ik{)} + O et 9, (4.164)

va(—x) = [B+]8]] (3nk)? G(2) {cos ¢J.(ik{) +sin @Y, (ikE)} +e-PEr@e ey if x > q,
(4.165)

ya(—x) = e PEf(2nk)} G(2) J (k) + Oe T e} if x < q, (4.16¢)

where ¢ = @ —}n—hE, 7 satisfies (4.21d) and ¢, satisfies (4.14¢).

4.4.2. The case A < — 4h?

(a) Auxiliary parameéters. Define

ky = 2hE, [/,
= (2m)~t el (edinie ) 31T (k) (4.17a)
ky > 0,0f = 1+4770(1) and |o¥| = (1—e2™)-1
Then 1= Kk +k7le20(1), (4.170)
b = jn+hE—arg of +k7le220(1), (4.17¢)

provided «; is bounded away from zero.
(b) Complex variable. On the region {z: Im z > —a} define the variable ¢ by

O =7 [(1—(2)2)] ’

(i) £ =1,etr when z = ia, Fn+ia.
The map z — { is analytic on the region and is one-to-one if |Re z| < =; it is shown in figure
4. Define also the transformation factor

G(2) = [(1-8)/4(2)]3,

real and positive if {2 is real.
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In the following asymptotic formulae,

6 = G(z) min {|1 — 2|4, «}}.

So on Q: y1(2) = (2k,/7)? G(2) K, (k1 8) + O 9, (4.184a)

pi(z—m) = (21/m)} G(2) Ky, (k1 {e) + Qe g, (4.18b)

where, uniforml = k7le 42 0(1) x {§—3 it el >, (4.19)
> Ys n 1 §_2 if |€| < 1’ .

provided that «, is bounded away from zero. The remarks following (4.15d) apply to (4.19)
also, with «, in place of «.
(¢) Modified functions, ¢ < 0. If x > 0, with z = ix, then y,(ix) is given by (4.244) and

ya(ix) = (sinh mu) =1 {(2,/m)} G(2) Re [iKi (i, Lei®)] + O ) (4.20)

where 7 is given by (4.25).

(d) Ordinary functions. The formulae IV, (6.3.5) are valid with the insertion of a factor
|o¥|~1, and with 4 = k7le~2¢0(1).

(¢) Modified functions, ¢ > 0. If x > 0, with z = }mw+ix, then

Me* ( ix) = +i(sinh mp) 1 €F1%(2nk,)E e™iG(2) oy, (K, LeBT) + Ottt g, (4.21)
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